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Abstract

There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system

efficiency and power density. This trade-off originates from the use of front surface spectral controls such as

selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been

developed which allows for both high power densities and high system efficiencies. The MIM device consists of

many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium

phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power

density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the

emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies.

Initial MIM development has focused on a 1 cm 2 device consisting of eight (8) series interconnected cells. MIM

devices, produced from 0.74eV InGaAs, have demonstrated Vo¢ = 3.2 volts, Jsc = 70 mA/cm 2 and a fill factor of 66%

under flashlamp testing. Infrared (IR) reflectance measurements ( > 2 lam ) of these devices indicate a reflectivity of

> 82%. MIM devices produced from 0.55eV InGaAs have also been demonstrated. In addition, conventional p/n

InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated

Introduction

In thermophotovoltaic (TPV) energy conversion, an emitter is heated to incandescence and a

photovoltaic device is placed in view of the emitter to convert the radiant energy into electrical

energy. Research in TPV has been renewed recently due to the development of new emitter,

filter and photovoltaic cell technologies [10]. Most current efforts in TPV research have

concentrated on using front surface spectral control elements such as selective emitters [1] or

graybody emitters combined with plasma, dielectric or dipole filters [2,3] in order to improve

system efficiency to the 20-40% range predicted by theory.
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The front-surface spectral control approach generally produces systems with low power densities

(W/cm:). Selective emitters, for example, have demonstrated in-band emittances ranging from

0.7 to 0.8 [4], with efficiencies of -40% (i.e. 40% of the emitted energy is convertible by the

photovoltaic device). In order to recuperate the non-convertible energy, filters are used to reflect

the long-wavelength photons back to the selective emitter. Unfortunately, there are no filters

available which provide both 100% transmission in the usable wavelength region and 100%

reflection elsewhere. Thus, a selective emitter emittance of 0.8 coupled with a typical filter

transmission of 80% leads to a reduction in the power density of 36%. This is an expensive loss,

particularly given the cost of TPV ceils. A graybody-emitter based system using the same filter
would show a similar, although smaller reduction in power density.

A different approach involves the use of rear-surface spectral controls. Using this technique, the

entire radiant output from the emitter is incident upon the photovoltaic (PV) device, thereby

providing high output power densities. Photons which the PV device is unable to convert, pass

through the cell structure and reflect off of a rear reflector back to the emitter for recycling.

Researchers have developed TPV ceils which utilize low-doped substrates and reflective rear

contacts to provide photon recycling [5,6]. Other researchers have developed series-

interconnected, monolithic cells for laser, fiber-optic and TPV applications [7,8]. We are

developing a cell which combines the advantages of both of these approaches ]11 ].

The Monolithic Interconnected Module or MIM consists of series-connected indium gallium

arsenide (InGaAs) devices on a common, semi-insulating indium phosphide (InP) substrate

(figure 1). An infrared reflector is deposited on the rear surface of the InP substrate to reflect

photons back toward the front surface of the cell. This provides a second pass opportunity for

photons capable of being converted by the cell. In addition, long wavelength photons are

returned to the emitter for "recycling", improving the system efficiency.

The MIM design offers several advantages. Firstly, small series-connected cells provide high

voltages and low currents, reducing I2R losses. In addition, the small size of the cells permits an

array to be comprised of series/parallel strings rather than a single series-connected string of

larger cells. This should improve the reliability of the TPV module since the failure of a single

cell would not debilitate the entire array. In addition, the cell size and distribution may be easily

adjusted to minimize the losses associated with emitter non-uniformity (i.e. variation in view

factor, temperature, etc.).

Secondly, the MIM design maximizes output power density since losses associated with front-

surface spectral controls are eliminated. This represents a significant simplification of TPV

system design and thermal management since there are no filters to cool. Thirdly, the rear

surface of the device is not electrically active, therefore the cell may be directly bonded to the

substrate/heat sink without concern for electrical isolation. This greatly simplifies the array

design and improves the thermal control of the cells. Lastly, photons which are weakly absorbed

have the possibility of multiple passes through the cell structure. This feature is particularly

important for lattice-mismatched devices, where poor minority carder diffusion length can be

partially offset by making the cell thin, forcing the carder generation to occur closer to the pin

junction.
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AlthoughtheMIM designhasmanybeneficialattributes,therearelimitations. Thedeviceis
producedon an InP substrateusingorganometallicvaporphaseepitaxy (OMVPE)growth
techniquesand as such may be too expensivefor many commercialapplications. The
simplificationof arrayfabricationmaypartiallyoffsetthehighercostof theMIM' s comparedto
conventionalTPVdevices.

a)

b)

Interconnec_
p+ InGaAs contact layer

p+ InP front window
p+ InGaAs emitter
n InGaAs base

n+ InP back window
n++ InGaAs lateral conductor
SI InP substrate

dielectric
IR reflector

Fig. 1. a) A 3-dimensional view of two (2) cells of a MIM.

b) A cross-sectional view of a MIM showing the individual layers.

MIM Development

Optical Development

Successful development of the MIM device requires balancing trade-offs between optical

performance (mid IR reflectivity) and electrical performance. To address the optical

performance issues, the free carrier absorption (FCA) for both n and p-type InGaAs as a function

of dopant type, level, thickness and wavelength was determined. Calibration samples with

doping levels ranging from 5e18 to 3e19 cm -3 were fabricated on semi-insulating InP substrates.

Absorption measurements were conducted using a spectrophotometer for the near IR (1 - 3 lam)

and a FTIR for the mid IR ( 3 - 10 lam). The spectrophotometer data (fig. 2) was fitted to

determine the actual absorption for a single pass through the material (i.e. the measured data was

corrected for reflection off of the surface, epi/substrate interface and the back substrate/air

interface). The corrected data was fitted to the following equation:

absorption(k) = 1 - exp(-o_ (_) * t) (1)

where: a (_,) = (C(_.) * n) for n-type material

(3.) = (C(_.) * p) for p-type material

n = electron (doping) density (cm 3)

p = hole (doping) density (cm _)
t = thickness in cm

(2)
(3)
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The analysis indicates that for an equivalently doped InGaAs layer, the p-type material will have

a FCA (averaged from 1.9 to 3 microns) 17x higher than the equivalently doped n-type material

(C = 7.97e-17 for p-type InGaAs, C = 4.48e-18 for n-type InGaAs). This is an important

consideration when determining the optimum polarity of the MIM device.

Another interesting feature of the absorption measurements is the shift in apparent bandgap

(0.3eV) for the heavily doped n-type InGaAs. We have determined that this shift is caused by a

Burstein-Moss shift in the degenerately doped material. The use of this material as the lateral
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Figure 2 - Absorption measurements for 3prn thick 0.74eV InGaAs

layers with various doping levels.

conduction layer (LCL) (fig.l) allows the base of the cell to be thinned for incomplete

absorption. Photons which are not absorbed in the cell on the first pass are able to pass through
the LCL, bounce off of the back surface reflector (BSR) and have a second pass through the cell.

This approach may not be optimal for 0.74eV material where the FCA in the n++ LCL represents

a significant loss (3.6% absorption/pass for 3pm LCL) with only a minor benefit to the device

performance. The technique may be best applied to lattice-mismatched material which suffers

from poor minority carrier lifetimes in the base, where reducing the base thickness should

increase the current as well as the voltage.

The FI'IR data indicated that the n-type material has low absorption up to the plasma frequency

which shifts from 7 microns to 12 microns as the doping density is varied from 3e19 to 8e18 cm-

3 The choice of doping density represents another trade-off between FCA and resistive losses.

At this point of the MIM development, we are focusing on the electrical development and will
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address the optimization with respect to optical performance once the fabrication process is well

established. The other elements of the optical performance, such as BSR and contact reflectivity

and anti-reflection coating development, are covered in a related paper presented at this

conference [9].

Electrical Development

The MIM device is currently being developed for use with a low temperature (1200K) blackbody

emitter. Assuming a quantum efficiency of 1 and a view factor of 1, a 0.74eV device would

produce a Jsc of 0.87 A/cm 2 and a 0.55eV device would produce 3.72 A/cm 2. Based on these

current densities, cell structures were determined which limit the resistive losses in the LCL and

emitter to 1% for each layer. The device structures are shown in figure 3.

0.1 pm p++ InGaAs (1el 9)

iil _i i:_̧i_iii! !!_!i!̧̧ i¸¸_¸¸¸

m
0.74eV

0.1pmp+ InP(2e18)
0.31Jmp++ InGaAs (1el 9)
2.0pmn InGaAs(5e17)
0.11Jmn+ InP (le18)
1.0pm n++ InGaAs (2el 9)

m
0.55eV

0.11Jmp++ InGaAs (0.55eV)
50A p+ InP
0.51Jmp++ InC.-.-.-.-.-.-.-.-._As(0.55eV)
2.01Jmn InGeAs(0.55eV)
50A n+ InP
0.51Jmn++ InGaAs (0.55eV)

2.0pm n++ step graded buffer
layer (InGaAs)

Figure 3 - 0.74 and 0.55eV device structuresfor operation witha 1200K blackbody.

The thin (0.1 micron) p++ InGaAs top layer was added as a contact layer so that non-alloyed

ohmic contacts could be used for both the emitter and base contacts. The InGaAs contact layer

was removed from between the grid fingers after metallization.

The MIMs reported in this paper were all fabricated as 1 cm 2 devices consisting of eight (8) cells

with 300 micron interconnects and 7 micron grid fingers on 100 micron centers. Subsequent

processing developments have reduced the interconnect width to 50 microns and the grid finger

widths to 5 microns [9]. Using these dimensions, a new mask set has been developed to produce

5mm x 5mm MIMs consisting of eight (8) 500 micron wide cells with the 50_n interconnects.

Test structures have been successfully processed with this design although the results will be

presented at a later date.

Results

Conventional planar p/n InGaAs devices were produced using the active cell layers shown in

figure 2a (note: the emitter doping was reduced to lel 8 cm 3 for these devices) in order to verify

the basic material quality. The I-V curve shown in figure 4 demonstrates the quality of the

baseline devices. The efficiency (11.7% AM0) represents a record for 0.74eV p/n InGaAs.

Calculations indicate that reducing the grid shadowing from the 16% on the test device to the 5%
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normally used in AM0 devices would increase the efficiency to >13%, a record for any 0.74eV

InGaAs device (p/n or n/p).

The external quantum efficiency for a 0.74eV baseline device with a dual layer anti-reflective

coating is shown in figure 5. As was stated earlier, the base region was intentionally grown thin

so that the effect of the BSR would be demonstrated. It was initially puzzling to observe the high

bandedge photoresponse from the conventional cell (with no BSR). Optical modeling indicates

that only 62% of the bandedge photons (1600nm) are absorbed in the thin base region, assuming

a single pass. Thus, the internal QE could not be greater than 62%. At 1600nm the baseline

device demonstrated a 74% internal QE (66% external QE, 10% reflection). The transmission
characteristic of a n+ InP substrate was measured at 1600nm and indicated >45% transmission

(not corrected for absorption and reflection). Thus bandedge photons which are not absorbed in

the cell are able to reach the back contact, which is a very reflective non-alloyed Au based

contact. It is believed that this contact acts as a BSR, reflecting the bandedge photons back

toward the active cell region. Our past pin devices had all utilized a sintered contact which forms

a highly absorbing Au2P3 compound at the semiconductor/metal interface. The QE

characteristics of these devices did not demonstrate this enhanced bandedge photoresponse. To

test this theory, p/n planar cells were fabricated from the same epitaxial InGaAs material with

and without sintered back contacts. The QE test data confirmed the reduction in long wavelength

response with sintered back contacts compared to non-alloyed contacts.

50
o40

E3o
"E
m20
-1

lO

Cell R409-4 "_

Spectrum: AM0
Jsc = 56.35 mA/cm^2 \
Voc = 398.8 mV
FF = 71.5

Efficiency = 11.7%

,,,t .... i .... t .... i .... I .... i .... i,,,

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Voltage (V)

Figure 4 - AM0 I-V characteristic of 0.74eV baseline p/n InGaAs device.

A negative aspect of this feature is that the reflection is diffuse in nature. Thus non-convertible

photons may be totally internally reflected and add to the thermal load of the cell. A benefit of

the diffuse reflection is that convertible photons will generally have a longer path length in the

active cell layers, improving the probability for absorption. Given the high absorption coefficient

for InGaAs, this is a marginal benefit.
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Figure 5 - External QE of 0.74eV p/n baseline structure with dual AR

The I-V curve for a 0.74eV MINI device is shown in Figure 6 under flashlamp testing. The data

indicates an average voltage of 400 mV per cell. This particular device was produced prior to the

development of the high quality Si3N4 dielectric and therefore is not expected to demonstrate

optimum performance. The I-V characteristics of individual cells were examined and found to

vary greatly within a single MIM device. The cell characteristics ranged from high quality diodes

to heavily shunted or even shorted devices. We believe that this variation is caused by defects in

the dielectric isolation layer and/or particulate related defects in the epitaxial material. Again, all

of these devices were produced prior to the optimization of the Si3N4 layer and were also

produced during a major building rehab which was the source of the particulate contaminates in

the epitaxial material. We have observed that if a grid finger covers a particulate damaged

region, the device shows a shunt characteristic. Although, if the problem area is removed by

cleaving, the device performance is significantly improved.

B0 ..... i .... i .... i .... ! .... i .... i'' '

'_ 0 t

_ 20

10

0 '' ' . .... i .... i .....

0 0.5 1 1.5 2 2.5 3

Voltage (volts)

3.5

• Figure 6 - I-V characteristic of 0.74eV MIM under flashlamp testing.
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The externalQE curvefor the0.74eVdeviceis shownin figure7 (withoutananti-reflective
coating). TheQE datarepresentsthe aggregateworst responsefrom acrosstheentiredevice,
giventheseriesinterconnectednatureof theMIM design.This deviceis expectedto produce
48.5mA whenilluminatedby a1200Kblackbodyemitterwithaviewfactorof 1.

0.7 ....

_0.6

0.5
LU

E 0.4

_ 0.3
o

_ 0.2

W 0.1

F .... F i

0.5 I 1.5

Wavelength (pro)

Figure 7 - External QE of 0.74eV MIM (no AR).

A 0.55eV MIM was produced to determine if there were any unforeseen difficulties or problems

in producing a MIM from lattice mismatched material. Figure 8 shows the I-V characteristic of a

0.55eV MIM under AM0 testing. As with the 0.74eV device reported above, this cell was

produced prior to the optimization of the dielectric material. Unfortunately, this device was

destroyed prior to I-V testing at higher injection levels.

3

62
-.j

.... i .... r .... i .... r .... i .... i ....

0.1 0,2 0,3 0.4 0.5 0.6

Voltage (volts)

0.7

Figure 8 - AM0 I-V characteristic of 0.55eV MIM device (no AR)
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Figure 9 shows the external QE characteristic for the 0.55eV MIM (without AR). Given the

rudimentary nature of the buffer layer used to produce this device and the limited development of

the cell layers, the results were very promising.
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Figure 9 - External QE of 0.55eV MIM (no AR)

Figure 10 shows the measured reflectivity for a 0.74eV MIM device (without an AR coating).

This particular device had a 3pm LCL and a low doped emitter (le18 cm 3). Optical modeling

suggests that IR reflectivity's of >90% are possible with optimized device structures.
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Figure 10 - Reflectance of 0.74eV MIM (no AR)
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